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ABSTRACT

We consider the optimal production and inventory allocation of a single-product assemble-to-order
system with multiple demand classes and lost sales. Each component is replenished by a dedicated
machine that is subjected to unpredictable breakdowns. We find that the machine state not only
influences the production and allocation decisions on its own component but also influences the
decisions on the other components. Specifically, the optimal component production policy is a base-
stock policy with the base-stock level non-decreasing in the inventory levels of the other components
and the states of the other machines. The optimal component allocation policy is a rationing policy with
the rationing level non-increasing in the inventory levels of the other components, the states of the
other machines, and its own machine state. We use an exponential distribution to approximate the
distribution of the total processing times and propose two heuristic policies to address the production
and allocation decisions. The importance of taking machine failures into consideration is revealed

through computational experiments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Machine failure, which renders production uncertain and cur-
tails production capacity, is recognized as one of the major issues
that challenge the management of production systems, especially
the assemble-to-order (ATO) system. The ATO strategy, a popular
operations management strategy, is wildly used in practice and has
received plentiful research attention. Song and Zipkin (2003),
and Benjaafar and El Hafsi (2006) review the literature on this
topic. In the ATO system, the manufacturer only keeps inventory at
the component level and postpones product differentiation to the
final stage of production. Such a strategy provides product diver-
sity, while at the same time enables production to quickly respond
to customer demand. Suppose that the components share the same
demand process and demand is satisfied only if all the components
are available, then the supply uncertainty of one component will
affect the performance of the other components. In this situation,
the influence of machine failures on the ATO system is significant.

An effective way to cope with replenishment uncertainty and
capacity constraint is to deploy the demand differentiation strat-
egy, which differentiates demand into different classes and offers
different services to different demand classes. Since different
demands have different values to the firm or they incur different
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penalty costs for lost sales or delays, it is not necessary to satisfy all
the demands when production is capacitated. Demand differentia-
tion can be implemented through the inventory allocation policy,
which determines whether or not to satisfy the demand from a
certain class based on the current system state. Therefore how to
jointly manage production and inventory allocation in the ATO
system with failure-prone machines and multiple demand classes
is an interesting problem to explore. Addressing this problem in
this paper, we derive the structural properties of the optimal
production and inventory allocation policies with respect to two
decision criteria, namely the expected total discounted cost over an
infinite horizon and the average cost.

Managing an ATO system with failure-prone machines is a
challenge in practice. For example, Solectron and Flextronics, two
of the largest contract manufacturers have adopted the ATO
strategy (Benjaafar and El Hafsi, 2006). Many manufacturing
firms in China, especially those in the high-tech electronics
industry, use such a strategy, too. In the manufacturing systems
of such firms, some of the components are outsourced while the
other components are produced in-house. If the outsourced
components are delivered in time, then the replenishment of
the produced components becomes the key factor that affects
system performance. The system consisting of the produced
components can be viewed as an ATO system with endogenous
lead times, which is the system that we study here.

In recent years considerable research has been devoted to the
modeling and analysis of decentralized and centralized ATO
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Table 1
Literature on the ATO system.

Allocation category Allocation policy

Related literatures

Component-based FIFO
allocation policy
Priority
Product-based NHB

Allocation policy Optimal Control

Song (1998), Song et al. (1999), Song and Yao (2002), Song (2002),
Lu et al. (2003, 2005), Lu and Song (2005), Hoen et al. (2010)
Mirchandani and Mishra (2002)

Lu et al. (2009), Song and Zhao (2008)

Benjaafar and El Hafsi (2006)

systems. In a decentralized ATO system, the system is managed
from the component perspective, i.e., the system is divided into
several subsystems, which are managed separately. Then each
subsystem is treated as a single-component inventory system
with multiple demand classes. A large body of literature has
studied the optimal production and inventory allocation of a
subsystem with endogenous lead times, see Ha (1997a, 2000) for
the lost sales model, and Ha (1997b), de Vericourt et al. (2002),
and Gayon et al. (2009) for the backorder model.

In a centralized ATO system, the optimal policies for the
subsystems are not necessarily optimal for the centralized sys-
tem. The demand correlations among the components are taken
into consideration. The literature on inventory allocation policies
in the centralized ATO system can be broadly classified into two
categories: the component-based allocation (CBA) policy, such as
the first-in-first-out (FIFO) policy and the priority allocation
policy, and the product-based allocation policy (PBA), such as
the no-holdback allocation (NHB) policy (the modified first-in-
first-out (MFIFO) policy belongs to the NHB policy). Under the
PBA policy, the inventory allocation decision is made based on a
component’s own state, as well as the states of the other
components. On the contrary, the CBA policy allocates inventory
only based on a component’s own state, regardless of the states of
the other components. Table 1 presents a summary classification
of the literature on allocation policies.

We mainly review the literature on the optimal control of an
ATO system that is most related to our paper. Benjaafar and El
Hafsi (2006) study the optimal control of an ATO system with
multiple demand classes and endogenous lead times.
Extending Ha’s (1997a) work to the ATO system, they show that
a dynamic control policy is optimal. They find that the optimal
control policies for the system with lost sales have similar
structural properties with respect to the expected total dis-
counted cost criterion and the average cost criterion. They also
consider the backorder case with a single demand.

There is an abundance of research on the single-component
system with machine failures. Akella and Kumar (1986), Bielecki
and Kumar (1988), and Sharifnia (1988) consider deterministic
demand models, while Feng and Yan (2000) and Feng and Xiao
(2002) study stochastic demand models. They show that the base-
stock policy is optimal. They all consider the single-class demand
model and do not include inventory allocation as a decision
variable. Cheng et al. (accepted for publication) consider a
make-to-stock system with multiple demand classes and fail-
ure-prone machines. They show that the optimal production
policy is a state-dependent base-stock policy and the optimal
rationing policy is a rationing policy with state-dependent ration-
ing levels. Different from the above literature, Gao et al. (2010)
study the performance evaluation of an ATO system with machine
failures. We extend Cheng et al. (accepted for publication) to an
ATO system, which is similar to the one considered in Benjaafar
and El Hafsi (2006), but with failure-prone machines. By formu-
lating the system as a Markov decision process, we work out the
structural properties of the optimal control policy. Specifically,
the optimal production policy for each component is a base-stock

policy with state-dependent base-stock levels and the optimal
allocation policy is a rationing policy with rationing levels
depending on the system states.

The remainder of the paper is organized as follows: We
introduce the basic model in Section 2. We present the structural
properties of the optimal control policies with respect to two
different decision criteria in Section 3. In Section 4 we propose two
heuristic policies to facilitate policy implementation in practice.
In Section 5 we present computational experiments to examine the
performance of the heuristic policies and the influence of machine
failures on system performance. We conclude the paper and
suggest future research directions in Section 6.

2. Model description

Consider a single-product ATO system that supplies products
to satisfy the demands from n different classes. The system
consists of m different types of components. One unit of the final
product requires one unit of each component (if the product
requires more than one unit of a certain type of component, we
can re-scale the unit of that component). The demand from class
ij=1,2, ..., n,arrives according to an independent Poisson process
with a rate 4; and requires one unit of the product. The demand is
said to be satisfied only if none of the components is out of stock;
otherwise the demand is lost and incurs a lost sale cost ¢;, which
varies from class to class (the demands with equal lost sale costs
can be aggregated and treated as from the same class). Without
loss of generality, we assume c¢; > ¢, > --- > c,. The component
jj=1.2,...,m, is replenished by its corresponding dedicated
machine j. The processing time of component j is exponentially
distributed with a production rate y;. Each machine is subjected
to unpredictable breakdowns. We assume that machines failures
are independent and time-dependent only. The up time of
machine i follows an exponential distribution with a failure rate
b;. A down machine is sent to repair immediately and will resume
its functional state after repair. The repair time of machine j
follows an exponential distribution with a repair rate r;.

Given the differences in the lost sale costs of different demand
classes, it is generally not optimal to satisfy demands on the first-
come-first-served (FCFS) basis regardless of their classes. Inven-
tory rationing may be used to preserve inventory for demands
with higher lost sale costs by rejecting those with lower lost sale
costs. Inventory rationing has been shown to be an effective
policy to save cost for systems with multiple demand classes. On
the other hand, the production of a component is inevitably
affected by the inventory levels of the other components because
demand is satisfied only if all the components are available, so the
stock out of one component affects the fulfillment of the demand.
Hence the static base-stock policy may not be optimal.

We address the above problem by finding the optimal produc-
tion and inventory allocation policies that jointly minimize the
inventory-related cost with respect to two different decision
criteria: the expected total discounted cost over an infinite
horizon and the average cost. The production policy specifies
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whether or not to produce and which component to produce.
The inventory allocation policy specifies whether or not to satisfy
the demand from a certain class. To facilitate notation, let Xi(t)
be the inventory level of component i at time t, which cannot be
negative, i.e., Xj(t)eZ*, and M(t) be the state of machine i at time
t. Each machine has only two states: 0 and 1, where O denotes
that the machine is down and 1 denotes that the machine is
functional. Then the system state at time t is (X(t),M(t)) with state
space Q, where X(t)=(X;(t),Xa(t), - - -, Xin(t)),M(t) = (M;(t),M5(t),
-, Mm(1)).

3. Optimal control

In this section we characterize the structural properties of the
optimal control policies with respect to two different decision
criteria.

3.1. The expected total discounted cost criterion

Let J*(X,M) denote the expected total discounted cost over an
infinite horizon with a starting state (X,M) under policy 7. Then
JH(X,M) is given by

i=1

X, M) = /O T et [h(xm)dur S gdNF©) |, 1)

where f is the discount factor, h(X(t)) = "I ; hi(Xi(t)), hi(X(t)) is
an increasing convex function denoting the holding cost rate of
component i, and NF(b) is the total number of class j demands that
cannot be satisfied immediately from the on-hand inventory up to
time t under policy 7. A policy 7* is said to be the optimal control
policy if it satisfies

J¥ X,M) = minJ"(X,M). )

To facilitate analysis, we define a set F that records the indices
of the functional machines, i.e., if ieF, then M;=1. So F is a subset
of @, =(1,2,...,m}, i.e, F< &. F denotes the complementary of F.
Following Lippman (1975), we re-scale the time unit so that
B+ 0 ((ui+Dbi+1)+ >i_ 4= 1. Then re-writing (1), we obtain
the following optimality equation:

T XM =T (M) = h(X)+ > ATT™ M)+ 1, Tl ™ (X, M)
=1 peF

+> b (X,M—ep)+ Z_rq]n* X.M+eq)

peF qeF

+ [Z(Hq +bg)+ er

qeF peF

J¥ XM, 3

for any (X,M)eQ, where e, p=1,2, ..., m is the pth unit vector of
dimension m, i.e., e, =(0,...,1,...,0), e is an m-dimensional vector
of ones, i.e., e=1,1,...,1, and T, T, and T are operators defined on
the real-valued function u(X,M) on the state space . We have

Tpu(X,M) = min{u(X +e,,M),u(X,M)}, @
T'u(X,M) = min{c, +u(X,M),H'u(X,M)}, )
where

, _fatuX,M), I7_,X =0,
H'u(X,M) = { u(X—e,M), otherwise.

Obviously, T, determines whether or not to produce component p
while T' determines whether or not to satisfy a demand from class I.
The first term in the optimality equation (3) denotes the holding
cost. The second to the fifth terms denote the expected total
discounted cost from the next decision epoch to infinity with

uniform transition probability. The last term is obtained by the
uniformization procedure.

It is known that the policy that satisfies the optimality
equation is the optimal control policy. From the optimality
equation, we can find that it is optimal to satisfy a demand from
class [ if and only if J*(X,M)—J* (X—e,M) > —¢; and at the same
time all the components are available. When machine p is
functional, it is optimal to produce component p if and only if
J™ (X+ep,M)—J™ (X,M) < 0.

The structural properties of the optimal control policy are
characterized through the optimality equation. To facilitate ana-
lysis, let (X_;M_;) denote the system state excluding the inven-
tory level of component i and the state of machine i, i.e,
XM =Xq,o W Xic1 . Xig 150 - o XM, MiZ1,Mj i 1,.. ., Mp). The
structural properties of the optimal control policy are presented
in the following proposition.

Proposition 1. The optimal cost function is J* (X,M) e V for any
(X,M)eQ. The optimal control policy can be characterized as
follows:

(1) Optimal production policy: The optimal production policy for
component i is a base-stock policy with the state-dependent
base-stock level S¥(X_;,M_;), where S}(X_;,M_;) = min{X; : DJ™
(X,M)>0|M;=1}. Furthermore, S}(X_;,M_;) satisfies some
additional properties as follows:

(1.a) S§X_,M_)) <S;(X+e)_,M_p), i#], (6)

(1.b) SFX_i$,M_j) <S;(X_i,(M+e))_),M; =0, i+#j. )

(2) Optimal allocation policy: The optimal component allocation
policy is a rationing policy with state-dependent rationing
levels Ri(X_;,M), where R{(X_;M)=(Rf;(X_1,M), and R,
X_;,M), - --,R;fn(X,,-,M)). R;jj(X,,v,M) denotes component i's
rationing level for the demand from class j, where R
(X_i,M) =min{X; : DJ” (X—e,M) > —¢,|II{_ ;X; # 0}. Further-
more, the rationing level has some additional properties as
follows:

(2.2) Ry (X_,M) = Ri (X +e)_,M), i+#], (8)
(2.b) Rf(X_i,M) > R} /(X_,M+€),M; =0, j=12...m, (9

(2.0) 1 =R (X_uM) < R (X_pM) < -+ < REy(X_i,M)
< SFX_i,M_y). (10

Proof. The proof is given in the Appendix O

Proposition 1 shows that the optimal control policy is dynamic
and state-dependent. It is optimal to produce component i if
Xi < Sf(X_,M_;); otherwise do not produce. As for the optimal
allocation policy, it is optimal to satisfy a demand from class [ if
Xi =Ry (X_,M) for any i,i=1,2,...,m; otherwise reject it. (1a) and
(1b) show that the optimal base-stock level S;(X_;,M_;) is non-
decreasing in the inventory levels of the other components and
the states of the other machines. This is, if it is optimal to produce
a certain type of component in a given state, then it remains
optimal to produce it when the inventory levels of the other
components increase or the other machines complete their
repairs. (2a) and (2b) show that the rationing level Rf(X_;,M) is
non-increasing in the inventory levels of the other components,
the states of the other machines, and its own machine state. That
is, if it is optimal to satisfy a demand from a certain class in a
given state, then it remains optimal to satisfy that class of
demand when the inventory levels of the other components
increase or the machines complete their repairs. (2c) shows that
it is always optimal to satisfy the demands from class 1 when all
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the components are available and the rationing level for each
demand is monotonous, i.e., the demand with a higher lost sale
cost has a lower rationing level than that with a lower lost
sale cost.

We numerically show the structure of the optimal control
policy using a simple case with two components and three classes
of demand. Fig. 1 shows the structure of the optimal production
policy while Fig. 2 shows the structure of the optimal allocation
policy. In Fig. 1, the optimal production policy for each compo-
nent is characterized by two different curves associated with the
state of the other machine: up or down. The four curves divide the
state space into eight regions. We specify the production decision
for each region in the figure. In Fig. 2 we present the optimal
allocation policy in four sub-figures. These sub-figures show the
optimal allocation decisions associated with four different
machine states. The corresponding allocation decisions are also
specified in each sub-figure. We see that the optimal allocation
policy is specified by eight rationing curves, which are dynami-
cally adjusted according to the system state.

3.2. The average cost criterion

In this section we discuss the structural properties of the
optimal control policy with respect to the average cost criterion.
Let g"(X,M) denote the average cost function under policy 7 with a
starting state (X,M), i.e.,

.1 °
T — _
g (X'M)_TETwTE[A

A policy ¥ is said to be optimal under the average cost
criterion if it satisfies

amn

hX(t)dt+ > cjdz\ljﬂ(t)} ] )

i=1

" (X,M) = ming"(X,M). (12)

607

Proposition 2. The optimal control policy with respect to the
average cost criterion possesses the same structural properties as
those with respect to the expected total discounted cost criterion.
The optimal production policy for each component is a base-stock
policy with base-stock levels satisfying (1a) and (1b), while the
optimal allocation policy is a rationing policy with rationing
levels satisfying (2a)-(2c) in Proposition 1.

Proof. The proof is given in the Appendix. O

3.3. System with backorders

In this section we assume that the demands that cannot be
satisfied from the on-hand inventory are backlogged. Exploring
and characterizing the structural properties of the optimal control
policy for the backorders case is much more complicated than
that for the lost sales case because we need to keep track of the
inventory levels of all the components, the machines states, as
well as the backorder levels of different demand classes, which
drastically increases the number of system states (Benjaafar and
El Hafsi, 2006). So, following Benjaafar and El Hafsi (2006), we
only analyze the system with a single demand class as an initial
attempt to address this problem.

We assume that demand arrives according to a Poisson process
with an arrival rate A. The demand that cannot be fulfilled
immediately from the on-hand inventory is backordered and
incurs a backorder cost b per unit per unit time. Let Y(t) denote
the net inventory level of component i at time t and (Y(t),M(t))
denote the system state at time t, where Y(t) = (Y;(¢t),...,Yn(t)).Let
O be the system state space, so we have & ={(Y,M):Y;eZM;=0,1},
where Z is the set of integrals. The number of backorders in the
system is denoted by B(Y(t)) = max{0,Y; (©),..., Y, (t)},where Y; () =
max{0,-Y;(t)}, i=1,...,m. Then the on-hand inventory level of
component i is given by Yi(t)+B(Y(t)). Let Q(Y(t)) denote the

20 T T T T T T /7: T T T
//
Produce component 1 /
18 I when M, =0, or 1 / §
16 | / Do not produce i
/ both component
Produce component 1 /
14 I only when M, =1 7 T
// 1
12 / *
> 10 / * * _
x Produce component /
- / *
8 1.2 when My = M = 1 " \ Produce component 2 i
% only when M4 = 1
*
6 / .
Produce component
1,2 when My =M, =1
4+ * -
Produce component 2
2 L Produce component 1,2 when M, =0, or 1 i
when My =M, =1
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
X

Fig. 1. Structure of optimal production policy for system with lost sales (44 =2, =/43=1, u; =, =2, b1 =b, =0.1,11 =1, =0.2, ¢; =160, c; =80, c3 =40, hy =hy =1,

B =0.0001).
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a
20
Satisfy demand
from class 1,2,3
15
< 10
Satisfy demand
5 %i—f from class 1,2
Satisfy demand from class 1
0
0 5 10 15 20
X4
Cc
20
Satisfy demand
from class 1,2,3
15
< 10
Satisfy demand
5 *¥ from class 1,2
Satisfy demand from class 1
0
0 5 10 15 20
X4
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b
20
Satisfy demand
from class 1,2,3
15
~ Satisfy demand
= 10 from class 1,2
5
X
0 Satisfy demand from class 1
0 5 10 15 20
X4
d
20
Satisfy demand
from class 1,2,3
15
10 Satisfy demand
from class 1,2
5 L v
Satisfy demand from class 1
0
0 5 10 15 20
X

Fig. 2. Structure of optimal allocation policy for system with lost sales (11 =4y =243=1, y =, =2,b1 =b;=0.1, 11 =1, =0.2,¢c; =160, c; =80, c3 =40, h; =hy =1,

B =0.0001).

instantaneous cost at time ¢, i.e., Q(Y(t)) = S ; hy(Yi(t)+B(Y(t)))
+bB(Y(t)), where the first term is the holding cost while the
second term is the backorder cost.

The expected total discounted cost function over an infinite
horizon with a starting state (Y,M) under a feasible policy 7 is
then given by

G*(Y,M) = /0 o e PQ(y(t))dt. (13)

A policy 7t*is said to be the optimal control policy if it satisfies

G™ (Y,M) = minG*(Y,M).
T

To facilitate notation, we drop the superscript from G* (Y,M)
used to denote the optimal cost function. Applying Lippman’s
transformation (1975), we re-scale the time unit so that
V' =f+A+u1+up+bi+by+r+15, and obtain the following equiva-
lent optimality equation:

G(Y,M) =TG(Y,M) = Q(Y)+AG(Y—e,M)+ > 11, T,G(Y,M)

peF

+> bpG(Y,M—ep)+ Z_rqc(y,M+eq)

peF qeF

+ |:Z(,uq+bq)+zrp:| G(Y,M),

qeF peF

14

where T and Tp are two operators defined on the state space O,
TpG(Y,M) = min{G(Y +ep,M),G(Y,M)}. Operator T, determines
whether or not to produce component p.

The following proposition specifies the structural properties of
the optimal control policy for the system with backorders.

Proposition 3. The optimal control policy for the backorder case
retains the structural properties as those in the lost sales case.
Specifically, the optimal production policy for component i is a
dynamic base-stock policy with state-dependent base-stock level
S*(Y_,M_;), where Y_; = (Y1,....Yi_1,Yi,1,....Ym). Furthermore, the
optimal policy satisfies the following additional properties:

(1) SV M- <S(Y+e) M_p), i#],
(2) S (Yo, M_) <S (Y_,(M+e)_yp, i#j M;=0.
Proof. The proof is given in the Appendix. O

The structure of the optimal control policy for the backorders
case of an ATO system with two components is given in Fig. 3.
In Fig. 3 we show that the optimal production policy is controlled
by four state-dependent curves, which divide the state space into
six regions. The optimal action for each region is specified in the
figure.

4. Heuristic policies

The optimal control policy is dynamic and complex to imple-
ment in practice even for simple cases. In this section we propose
two heuristic policies that have a relative simple structure and are
easy to implement. The heuristic policies work on the basis of
state space reduction by re-defining the processing time of each
component. Noting that machine failures interrupt the production
process and increases the total processing time, we re-define the
total processing time of each component as consisting of the exact
processing time and the total repair time, and denote it by Y;. We

use an exponential distribution with a mean /Zt,-‘l to approximate
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60 T T T T T T | T
Do not
Produce component 1 produce any

40 I when M, =0, or 1 component
o KK A S o 1
20 1 *aoe**"-*** b

oK |

%*fﬁ" Produce both components ]

o R when the corresponding 4
0 sk machines are up 7 b

s ¥

sl ¥
N o0 | ¥ i

X 20 Produce component 1 when M, =0, or 1; o
produce component 2 when M; = 1 g‘
-40 d ]
-60 Produce component 1 when M, = 1; 4
produce component 2 when My =0, or 1
-80 Produce component 2 R
when My =0, or 1
-100 1 1 1 i 1 1 1
-100 -80 -60 -40 -20 0 20 40 60
X

Fig. 3. Structure of optimal production policy for system with backorders (1=1, u; =y, =2, by =b, =0.1,r, =r,=02,b=5, hy =h, =1, f=0.0001).

the total processing time. In this section we propose two approx-
imation methods to approximate ji;. Then the new system can be
treated as the system with failure-free machines studied
by Benjaafar and El Hafsi (2006). It is easy to see that, for any
component, there exist 2™~! machine-state-dependent base-
stock levels and (n—1)2™ machine-state-dependent rationing
levels for that component under the optimal control policy. So
the heuristic policies, which reduce the state dimension, can
significantly simplify the computational effort to determine the
optimal decisions. Furthermore, such heuristic policies can be
used for either the expected total discounted cost or the average
cost decision criterion. The Laplace-Stieltjes Transform (LST) of Y;
is given by (see Buzacott and Shanthikumar 1993)

Hi(ri+s)
$2+5(ri+bi+ p) + ity

Fy,(s)= (15)

We use two methods to approximate the total processing time.
One is expectation approximation (EA), where ji;! is approxi-
mated by the expectation of Y; denoted by E(Y;), i.e., fi; 2 ZEY)).
The other is variance approximation (VA), where ﬁ,—‘z is approxi-
mated by the variance of Y;, denoted by D(Y)), i.e., ,a,fz = D(Y;). We
note that E(Y;) and D(Y;) can be calculated from the LST of Y
From (15), we have

=, _ ri+b;
E(Yi)=*FY,»(5)‘5:O—TMi, (16)
- 2(ri+b)?+2b
E(Y?) = Fy(s)], o = 220" +2bit (17)
(i)
X 2
D(Y;) = EY?)—[E(vp = (00" +2bi (18)

(i)’

Then the optimal values for the heuristic policy with respect to
both decision criteria can be derived by substituting ji; into u;
in Benjaafar and El Hafsi’s (2006) model.

5. Computational experiments

In this section we present computational results to examine
the structures and assess the performance of the heuristic
policies. The computational results highlight the significance of
taking machine failures into consideration.

First we present some figures to show the structures of the
heuristic policies for the systems with two components and three
classes of demand with respect to the expected total discounted
cost criterion (using the average cost criterion does not vary the
structural properties of the optimal heuristic policies) and com-
pare them with the optimal control policies. The optimal produc-
tion and allocation control under the EA heuristic policy for the
lost sales case are shown in Figs. 4-6. In Fig. 4 we present the
optimal heuristic production decisions with the optimal produc-
tion control curves in the background. We see that the heuristic
production control divides the state space into four regions and
the corresponding action for each region is specified in the figure.
We note that the base-stock levels of both components under the
heuristic policy are higher than those under the optimal control
policy. This is possibly because the production rates of the
components are under-estimated under the heuristic policy,
which suggests the stocking of more inventory to cope with the
uncertainty caused by machines failures. Fig. 5 presents the
optimal heuristic allocation policy. We see that the rationing
curves only divide the state space into three regions, which have a
much simpler structure than that the optimal allocation
policy. Fig. 6 presents the optimal heuristic allocation decisions
with the optimal control policy in the background to facilitate
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Fig. 4. Structure of EA heuristic production policy for system with lost sales. (11 =4,=43=1, 4y =, =2,b1=b,=0.1,1r1 =r,=0.2, c; =160, c; = 80, c3 =40,
hy =hy =1, =0.0001).
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Fig. 5. Structure of EA heuristic allocation policy for system with lost sales (41 =A,=23=1, 4y =, =2,b1 =b,=0.1, 11 =r,,=0.2, c; =160, c; = 80, c3 =40,
hy =h; =1, =0.0001).

policy comparisons. We see that the rationing level for each Figs. 9 and 10 present the optimal EA heuristic policies for the
demand class under the heuristic policy is not lower than that backorder case in different settings, one for the case with low
under the optimal control policy when the machines are both up failure rates and the other for the case with high failure rates.
and not higher than that when the machines are both down. In Fig. 9 we see that the optimal heuristic production policy is
Figs. 7 and 8 show the structure of the VA heuristic policy. characterized by two curves, which divide the state space into
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four regions. Each region has its own corresponding actions. We
also note that the base-stock level for each component under the
EA heuristic policy is lower than that under the optimal produc-
tion policy. But it is not always the case, Fig. 10 shows that the

base-stock level is not always lower than that the optimal base-
stock level.

Now we provide computational experiments to show the effec-
tiveness of exponential approximation and highlight the influence of
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Fig. 10. Structure of EA heuristic allocation policy for systems with backorders (A1=1, yty =, =2,b; =b, =05, =r,=0.2,b=5, hy =h, =1, #=0.0001).

machine failures. To facilitate comparisons, we only consider the
average cost criterion because the average costs under the
optimal control policy and a heuristic policy are both constant
and independent of the starting state. The average cost under the
optimal control policy can be computed by the value iteration
algorithm. Before applying the value iteration algorithm, we first
truncated the infinite countable state space to a finite state space,
i.e., [0,5], where S is large enough to ensure that the optimal cost
function is not sensitive to the truncated state space, then we re-
defined the transition rates. The optimal heuristic policy, which
actually is the optimal control policy for the single-product
ATO system with failure-free machines, can be obtained from
Benjaafar and El Hafsi (2006). Then we applied the optimal
heuristic policy to the original system and derived the average
cost under this policy by using the value iteration algorithm.
Details on the value iteration algorithm can be found in Puterman
(1994).

We evaluate the effectiveness of a heuristic policy H, H=EA or
VA, by its relative cost difference from the optimal control policy,
denoted by Rf = (g —g/g) x 100%, where g is the average cost
of H and g is the optimal average cost. A small value of R"
indicates that the heuristic policy performs well compared with
the optimal control policy. We ran two sets of computational
experiments to examine the performance of the heuristic poli-
cies, which are listed in Table 2. From Table 2 we see that the
ratio R¥A varies from 0.583 to 16.122 depending on the system
settings. The heuristic policy works well when A;+/2;+/43> i;
because the average ratio of RF is about 1.500. But when
A1+22+ 73 < W, the heuristic policy does not work so well with
the ratio RF* being around 10.000. In other words, as the
production rate increases, the effectiveness of the approximate
distribution of the actual processing time decreases. A plausible
explanation is that the approximate distribution amplifies sup-
ply uncertainty as the production rate and failure rate increase,
which prompts the system to store more than the necessary

inventory to cope with the uncertainty. This can be induced from
the seventh and eighth sets of numerical examples in Table 2.
Note that the seventh set of numerical examples indicates that
the ratio RE” decreases with the lost sales cost of class 1 demand
and increases with the holding cost of component 1. Specifically,
RE% reaches the highest point 16.122 when the holding cost is 5.
From the ninth set of examples, we see that the ratio RE* does
not necessarily increase with the failure rates of both machines.
This is possibly because the failure rates affect the system cost
through the approximate distribution of the total processing
time and the effectiveness of the approximate distribution does
not necessarily increase with the failure rates. On the other
hand, R varies from 0.363 to 63.474. We also note that the ratio
REA is smaller than the ratio R¥* most of the time, which implies
that EA performs better than VA. Properly choosing an approx-
imation method could be a key factor in the design of heuristic
policies.

Table 2 also shows that the average cost increases with the
failure rate of each machine, the lost sales cost of the demand
with high priority, and the holding cost of each component, while
decreases with the lost sales cost of the demand with low priority.

6. Conclusions

In this paper we consider the optimal production and inven-
tory allocation of a single-product ATO system with failure-prone
machines and multiple demand classes. We show that the
optimal control policy depends on the component inventory
levels as well as the machine states. In the lost sales case, the
demand from the top class should always be satisfied if all the
components are available. Rejecting the demands from the top
class yields no benefit to the system. In view of the complexity of
the optimal control policy, we propose two heuristic policies with
relatively simple structure to facilitate policy implementation in
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Table 2
Optimal control policy vs. heuristic policy w.r.t. average cost criterion.

1 Ja 3 e o by b, r T o C C3 hy hy g RHF R

1 1 1 2 2 0.1 0.1 0.2 0.2 120 80 60 1 1 26.449 2.247 4.429
- - - - - - - - - 140 - - - - 27.762 1.963 6.076
- - - - - - - - - 160 - - - - 29.007 2.002 7.487
- - - - - - - - - 180 - - - - 30.180 1.606 7.928
- - - - - - - - - 100 - 80 - - 27.070 2.540 2.119
- - - - - - . - - - - 60 - - 24.903 1.664 3.507
- - - - - - - - - - - 40 - - 22.502 2.048 3.977
- - - - - - - - - - - 20 - - 19.986 2.363 4.129
- - - - - - - - - 160 80 40 1 - 26.551 2233 8.203
_ _ - - - - - - - - - - 2 - 28.102 2.792 8.219
- - - - - - - - - - - - 3 - 29.129 2.692 7.591
_ - _ - - - - - - - - - 4 - 29.914 3.600 8.223
_ _ - - - - - - - - - - 5 - 30.543 4.592 9.887
- - - - - 0.5 0.5 - - 120 - 60 1 - 29.323 1.443 0.945
- - - - - - - - - 140 - - - - 31.200 0.932 1.118
- - - - - - - - - 160 - - - 32.952 1.292 0.837
- - - - - - - - - 180 - - - - 34.659 0.891 0.539
- - - - - - - - - 100 - 80 - - 29.702 1.516 1.112
- - - - - - - - - - - 60 - - 27.378 1.752 1.208
- - - - - - - - - - - 40 - - 25.007 1.899 1.288
- - - - - - - - - 20 - - 22.628 2.095 1.415
- - - 5 5 0.1 0.1 - - 80 80 40 - - 10.733 8.130 59.893
- - - - - - - 100 - - - - 11.577 6.656 62.208
- - - - - - - - - 120 - - - - 12.383 5.690 60.158
- - - - - - - - - 140 - - - - 13.118 9.175 62.177
- - - - - - - - - 160 - - 1 - 13.815 8.795 63.474
- - - - - - - - - 160 - - 2 - 14.963 8.875 56.553
_ _ - - - - - - - - - - 3 - 15.770 8.516 54.978
_ _ _ - - - - - - - - - 4 - 16.409 7.331 50.753
_ _ - - - - - - - - - - 5 - 17.000 8.071 51.907
- - - - - - - - - 80 - - 1 - 13.082 11.815 9.721
- - - - - - - - - 100 - - - - 14.294 9.738 12.733
- - - - - - - - - 120 - - - 15.474 8.285 14.288
- - - - - - - - - 140 - - - - 16.618 8.461 14.201
- - - - - - - - - 160 - - 1 - 17.715 7.170 13.362
- - - - - - - - - 160 - - 2 - 18.172 10.587 17.162
_ - - - - - - - - - - - 3 - 18.441 14.315 20.465
- - - - - - - - - - - - 4 - 18.645 14.417 22.510
- - - - - - - - - - 5 - 18.773 16.122 22.839
- - - 5 5 0.1 0.1 - - - - - 1 - 13.815 8.795 63.474
- - - - 0.2 0.2 - - - - - - - 16.063 8.193 37.129
- - - - - 0.3 0.3 - - - - - - 17.035 6.269 25.506
- - - - - 0.4 0.4 - - - - - - - 17.507 7.260 19.067
- - - - - 0.5 0.5 - - - - - - - 17.715 7.170 13.362

practice. The two heuristic policies differ in the method used to Acknowledgments
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Appendix
Proof of Proposition 1

In order to specify these properties, we introduce a set of
functions with certain properties and prove, following the same
logic in deriving the optimality equation, that the operator
defined possesses these properties. To simplify notation, we
define the following difference operators:

Diu(X,M) = u(X+e;, M)—u(X,M),

D.u(X,M) = u(X+e,M)—u(X,M),
DUU(X,M) = D,'Ll(X—O—@j,M)—D,‘U(X,M) = DjU(X-Fe,‘,M)—DjU(X,M),



T.C.E. Cheng et al. / Int. J. Production Economics 131 (2011) 604-617 615

D;eu(X,M) = Diu(X + e,M)—D;u(X,M) = Dou(X + e;, M)—Deu(X,M),
AiuX,M) =uX,M)—u(X,M—e;), where M;=1.

We see that D is the difference operator on the inventory level
while 4 is on the machine state. Let V be a set of real-valued
functions defined on the state space Q. If u(X,M)eV,(X,M)e Q, then
u(X,M) satisfies the following properties:

P1: Dyu(X,M) >0,

P2: Dju(X,M)<0, i#j,

P3: Dju(X,M) >0,

P4 : Dju(X,M)—Dju(X,M—e;) >0, for any ie{p,M, =1},

P5: Dju(X,M)—Dju(X,M—e;) <0, for any ie{p,M, =1}, and i#}],

P6: Deu(X,M)—D.u(X,M—e;) >0, for any ie{p,M,=1},
P7 : Deu(X,M) > —c;.

These properties are used to characterize the structure properties
of the optimal control policy. Properties P1-P3 are introduced to
characterize the relationship with the inventory levels. Specifically,
Property P1 indicates that u(X,M) is convex in X;,i=1,...,m. The
convex property is used to prove that the optimal production control
has a threshold-type structure. Property P2 indicates that u(X,M) is
submodular, which is used to specify how the optimal action varies
with the other state variances in X_; Property P3 is used to
characterize how the optimal allocation policy varies with changes
in X;,i=1,...,m. P4-P5 are used to characterize how the optimal
production policy and inventory allocation policy vary with the states
of the machines. P7 provides a bound on D u(X,M).

Properties P4-P6 can be also expressed in the following manner:

P4 : AuX+e;,M)—4;u(X,M) =0, for any ie{p,M,=1},
P5: Aju(X+e;,M)—A;u(X,M) <0, for any ie{p,M,=1}, and i#]j,
P& : AjuX+eM)—A4;u(X,M) =0, for any ie{p,M,=1}.

Lemma 1. If u(X,M)eV, then Tu(X,M)eV.

Proof. The proofs of properties P1, P2, P3, and P7 are similar to
those in Benjaafar and El Hafsi (2006), so we omit them. We prove
properties P4-P6 here.

Verification of property P4

We find that if we can prove that the following conditions hold
SP1 : Tu(X+e;,M)—Tu(X,M) > u(X+e;,M—e;)—u(X,M—e;),
SP2 : D;T,u(X,M)—D;Tyu(X,M—e;) >0, ipeF, but i#p,
SP3 : D;T'u(X,M)—D;T'u(X,M—e;) > 0,
then Du(X,M)—D;u(X,M —e;) > 0 holds.

SP1: Aju(X,M)=min{u(X+2e;M),u(X+e;,M)} —min{u(X+e;M),
u(X,M)}—u(X+e;,M—e;)+u(X,M—e;). We consider two cases as
follows:

Case 1. Du(X+e;,M) <0, then

Aq u(X,M)=D;u(X +e;,M)—D;u(X,M—e;) > D;iu(X,M)—D;u(X,M—e;) > 0.
Case 2. Du(X+e;,M) >0, then A;u(X,M)=>Du(X,M)—Du(X,M—e;)
>0.

SP2: Let Ax(X,M)=DT,u(X,M)—D;T,u(X,M—e;). Given proper-
ties P2 and P5, we have D,u(X+e,M) < D,u(X,M) < D,u(X,M—e;)
and SP2 can be proved by considering three cases as follows:

Case 1. Dpu(X\M—e;)<0, then
Au(X+ep,M) = 0.

Au(X,M) > Au(X+e;+ep,M)—

Case 2. Dyu(X+e;,M) <0 < D u(X,M—e;), then Au(X,M)Au(X+e;+
ep,M)— Au(X,.M) > Au(X+e,M)— Au(X,M) > 0, where the third and
last results are due to properties P5 and P6.

Case 3. 0<Dpu(X+e;M), then
Au(X,M)> 0.

SP3: LetA;u(X,M) =TwuX+e,M)—TuX,M) —T'uX+e;M—e;)
+T'u(X,M—e;). Then SP3 can be proved by considering four cases
as follows:

Azu(X,M) > = AﬂJ(X“‘ e,—,M) —

Case 1. If I, . x,=0, then Asu(X,M) > 0.

Case 2. If [#1,x;=0, and Il x.#0, then we distinguish two
subcases:

(1) Deu(X+e;—e,M) < —c, then we have Asu(X,M)A;u(X+e;,M)—
Au(X,M) > 0.

(2) Deu(X+e;—e,M) > —c, then we haveAsu(X,M) > Aju(X+e;—
e,M)—Au(X.M) > Au(X,M)—Au(X,M)=0, which follows
from property P5.

Case3. If [#1, and I[I;x,#0, then we have D.u(X-—e,
M—e;) <D.u(X—eM) <D.u(X—e+e;,M), which leads to the fol-
lowing three subcases:

(1) Deu(X—e+e;,M) < —c,
AuX, M)= 0.

(2) Dou(X—e,M—e;) < —c; < Deu(X—e+e;,M), then Asu(X,M)>
u(X+e;—e,M)— [c+u(X,M)]—u(X+e;—e,M—e;)+[c;+u(X,M—
e;)]|=Au(X+e;—e,M)—Au(X,M) >0, which follows from
property P5.

(3) —¢ < Dou(X—e,M—e;), then Asu(X,M) > A;u(X +e;—e,M) —A;u
X—e,M)>0.

then Asu(X,M) > A;u(X+e;M)—

Case 4. If I=1, x;=0,IT . x; # 0, then Asu(X,M)=Au(X+e;—e,M)—
Au(X,M) > 0, which follows from property P5.

Case 5. If =1, IIix,#0, then Asu(X,M)>Au(X+e;—e,M)—Aju
(X—e,M) >0, which follows from property P4.

Verification of property P5

Comparing (19) and (20), we find that if the following condi-
tions are satisfied, then property P5 holds:

SP4 : Tu(X+e;,M)—-Tu(X,M) < u(X+e;,M—e)—uX,M—e;),
SP5 : DiT,u(X,M)-D;Tyu(X,M—e;) <0, ipeF, but i#p,
SP6 : D;iT'u(X,M)—D;T'u(X,M—e;) <0.

SP4: Let Biu(X,M)=min{u(X+e;+e,M),u(X+e;,M)}—min{u(X+e;
M),u(X,M)}—Dju(X,M—e;). We distinguish two cases:

Case 1. Du(X,M)>0, then we have Bu(XM)<Du(X,M)
—Dju(X,M—e;) <0, where the last equation result is due to
property P5.

Case 2. Du(XM)<0, then we have Bu(XM)<Du(X+e,M)
—Du(XM—e;) <Du(X.M)—Du(X,M—e;)<0, which follows from
property P2 and P5.

SP5: Let Bou(X,M)=D;T,u(X,M)—D;T,u(X,M—e;). We consider
two cases as follows:

Case 1. If p=j, we consider three cases as follows:

(1) 0 <Dju(X, M), then Bu(X,M) < Dju(X,M) —D;ju(X,M— e;) <0.

(2) Dju(X,M) <0 <Dju(X+ej;,M—e;), then Bu(X,M) < u(X+e;,M)—
u(X+e;,M)—u(X+e,M—e;)+u(X+e;,M—e;)=0.

(3) Dju(X+ej,M—e;) <0, then Byu(X,M) < Dju(X+e;,M)—Dju(X+e;,
M—e;) <O0.
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Case 2. If p #j, we distinguish the following four subcases:

(1) Dpu(X,M) < 0,Dpu(X +e;,M—e;) <0, then
Byu(X,M) < Dju(X +ep,M)—D;u(X+ep,M—e;) <O0.
(2) Dyu(X,M) < 0,Dpu(X+e;,M—e;) > 0, then
Byu(X,M) < Dju(X +e,,M)—Dju(X,M—e;) < Dju(X,M)—Dju(X,M—e;) < 0.
(3) Dpu(X.M) = 0,D u(X+e;,M—e;) <0, then Bu(X.M) < Au(X+e;+
ep,M)—Au(X.M) < Au(X+e,M)— Au(X,M) < 0, which is due to

property P5.
(4) Dpu(X,M) > 0,Dpu(X+e;,M—e;) > 0, then

Byu(X,M) < Dju(X,M)—D;u(X,M—e;) <O0.

SP6: Let Bsu(X,M)=D;T'u(X,M)—D;T'u(X,M—e;), We consider
five cases as follows:

Case 1. If I1; . jx, =0, then Bzu(X,M) <0.

Case 2. If I # 1, x;=0, and ITj . jx; # O,
then we distinguish two subcases:

(1) Deu(X+ej—e,M) < —c,
AuX, M) <0.

(2) Deu(X+ej—e,M)> —c;, then w get Bsu(X,M)<Au(X+e;j—e,
M)—Au(X,M) < Au(X—eM)—Au(X,M) <0, which follows
from properties P5 and P6.

then Bsu(X,M)<AuX+ e;,M)—

Case 3. If [# 1, and IIx; # 0, then
we have the following four subcases:

(1) Deu(X—e,M) < —c;,Deu(X—e+e;,M—e;) < —c;, then
Bsu(X,M) < Aju(X+e;,M)—4;u(X,M) < 0.

(2) Deu(X—e,M) < —c;,Deu(X—e+e;,M—e;) > —c;, then
Bsu(X,M) < Aju(X+ej—e,M)—Au(X,M) < 4;u(X—e,M)

—A;uX,M) <0.

(3) Deu(X—e,M) > —c;,Deu(X—e+ej,M—e;) < —c;, then

Bsu(X,M) < Dju(X—e,M)—D;u(X,M—e;) < Dju(X,M)
—Dju(X,M—e;) <O0.

(4) Deu(X—e,M) > —c;,Dou(X—e+e;,M—e;) > —c;, then

Bsu(X,M) < Dju(X—e,M)—D;u(X—e,M—e;) < 0.

Case 4. If I=1,x;=0, and II . jxx # 0, then we have
Bsu(X,M)=Au(X+ej—eM)—Au(X.M) < Au(X+e;,M)— Au(X,.M) <0,

which follows from properties P5 and P6.

Case 5. If [=1,
Au(X—eM) <0,
which follows from property P5.

IIix;#0, then Bsu(X.M)=Au(X+ej—e,M)—

Verification of property P6

If we can prove the following observations, then property P6
holds.
SP7 : Tiu(X+e,M)—Tiu(X,M) > u(X+e,M—e;)—u(X,M—e;),
SP8 : DeT,u(X,M)—D,Tyu(X,M—ej)>0, ipeF, but i#p,
SP9 : D T'u(X,M)—D.T'u(X,M—e;) > 0.

SP7: Let Ciu(X,M)=min{u(X+e+e;,M),u(X+e,M)}—min{u(X+e;
M),u(X,M)} —D.u(X,M—e;).
We consider two cases as follows:

Case 1. Du(X+e,M) <0, then
Ciu(X,M) > D.u(X +e;,M)—D.u(X,M—e;) > Dou(X,M)—D.u(X,M—e;) > 0.

Case 2. Diu(X+e;,M) >0, then Ciu(X,M)> D.u(X,M)—D;u(X,M—e;)
>0.

SP8: Let Cy(X,M)=DT,u(X,M)—D.T,u(X,M—e;). We consider
four cases as follows:

Case 1. Du(X+e,M) < 0,D,u(X,M—e;) <0, then

Gu(X,M) = Deu(X +ep,M)—Deu(X +ep,M—e;) > 0.

Case 2. Dyu(X+e,M) < 0,D,u(X,M—e;) >0, then

Gu(X,M) = Deu(X +ep,M)—Deu(X,M—e;) > Deu(X,M)—D.u(X,M—e;) > 0.
Case 3. Dyu(X+e,M)>0,D,u(X,.M—e;) <0, then Gu(X.M) > Au(X+
e,M) — Aju(X+e,M) > Au(X,M)— Au(X+e,M) >0,

which follows from properties P5 and P6.

Case 4. Du(X+e,M) > 0,D,u(X,M—e;) >0, then
Gou(X,M) > Dou(X,M)—Deu(X,M—e;) > 0.

SP9: Let Csu(X,M) = T'u(X+e,M) —T'u(X,M)— T'u(X+e,M—e;)+
T'u(X,M—e;), then SP9 can be proved by considering the following
four cases:

Case 1. If [ # 1, and II;x,=0, then there are two subcases:

(1) Deu(XM)< —c, the we have Gu(XM)=>c+u(X+eM)—[c+u
(X+eM—e)]— Au(X,M)=Au(X+eM)—Au(X,M) > 0.

(2) Deu(X,M)>—¢;, then GuX,M) >uX,M)—uX,M—e;)—
AuX,M) =0.

Case 2. If [ #1, and II;x, # 0, then it leads to three subcases by
considering D.u(X—e,M—e;) < D.u(X—e,M) < D.u(X,M).

(1) Deu(X—e,M—e;) < D.u(X,M) < —c;, then
GuX,M) = [¢;+uX+e,M)]—[c;+uX,M)]—[c;+uX +e,M—e;)]
+[+uX,M—e;)] = d;ju(X+e,M)—A;u(X,M) = 0.
(2) Deu(X—e,M—e;) < —c; < Dou(X,M), then
Czu(X,M) > u(X,M)—[c;+uX,M)—uX,M—e)]+[c;+uX,M—e;)] = 0.
(3) —¢ <D.u(X—e,M—e;) < D.u(X,M), then
GuX,M) > A;ju(X,M)—A;u(X—e,M) > 0.

Case 3. If [#1, and I1;x, =0, then we have

CGuX,M) = u(X,M)—u(X—e,M)—u(X,M—e;)—A;u(X,M) = 0.
Case 4. If I=1,and II;x; # 0, then we have

GuX,M) = AjuX,M)—A;uX—e,M)>0. O

Lemma 1 shows that operator T defined following the same
logic of the optimal equation preserves properties P1-P7, so we
have J™ (X,M) e V.

Property P1 indicates that DJ™ (X,M),i = 1,2,...,m, is increasing in
X; such that for any X;>S;(X_;,M_;), DJ™ (X,M)>0, so not to
produce is optimal. Hence the optimal production policy is a base-
stock policy. P3 indicates that D.J™ (X,M) is increasing in
X, i=1.2,...,m, such that for any X;>R;(X_;,M_;), D™ (X,
M) > —c;, so it is optimal to satisfy a demand from class I. Hence
the rationing policy with state-dependent rationing levels is optimal.

Inequalities (6) and (7) can be induced directly from properties P2
and P5. If it is optimal to produce component i when the system is in
state (X,M), i.e, DJ™ (X,M) <0, then from property P2, we have
DyJ™ (X+e;,M) < DJ™ (X,M) <0,i+j, which leads to (6). From prop-
erty P5, we have DjJ™(X,M+e) <DJ"(X,M)<0, m;j=0,i#]j,
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which leads to (7). Inequalities (8) and (9) can be induced directly
from properties P3 and P6. If it is optimal to satisfy a demand from
class I in state (X,M), i.e., D¢J™ (X,M) > —c;, then from property P3, we
have DeJ™ (X+ej,M)>D,J™ (X,M) > —c, i+j, which leads to (8).
From property P6, we have D™ (X,M+ej)> D™ (X,M)>
—c;, m;j =0, which leads to (9). Inequality (10) is obtained directly
from properties P1 and P7.
Proposition 1 is proved. O

Proof of Proposition 2

First we prove the existence of the average cost. If the following
two conditions are satisfied, then there exists an optimal constant
average cost g, which is independent of the starting state (see,
e.g., Weber and Stidham 1987, Puterman, 1994; Benjaafar and El
Hafsi, 2006): (1) there exists a stationary policy 7/, which induces a
positive recurrent Markov chain and has a finite average cost g* and
(2) the set X e Z+ : h(X) < g™ is not empty and finite.

Consider a stationary policy 7, which operates in the following

manner: The inventory of component i,i=1,2, ..., m, is controlled by a
base-stock policy with the base-stock level s; and demands are
satisfied on the FCFS basis. It is easy to check that the induced
process under policy 7’ is a positive recurrent Markov chain, so the
system has a finite constant average cost g*. As for condition (2), h(X)
is an increasing convex function in the component inventory level
X;,i=1,2,...,m, so the number of X that satisfies h(X) < g™ is non-
empty and finite. Based on the above analysis, there exists a vector
fIXM) satisfying the optimality equation under the average cost
criterion, i.e.,
F XM= 1 [T M)—g], 19)
where v= 71" (i;+b;j+1)+ > j_ ; 4. The structural properties of
the optimal control policy are determined through the vector fiX,M).
To simplify notation, we define a new operator T on the set of real-
valued function u(X,M) defined on the state space , where
T'uX,M)=1/v)[TuX,M)—g].

With respect to the average cost criterion, we do not re-scale
the time unit in the optimality equation (14) for the average cost
case. Lemma 1 states that if f{X,M)eV, then operator T possesses
properties P1 to P6. A linear transformation of operator T, T
preserves these properties. While the showing of property P7
in Lemma 1 used the relationship S+ >/ (g +bi+1)+ Y74
Aj=1, we can prove property P7 in a similar way as follows:

D.Tf(X—e,M) = % [TFXM)—TF (X, M)] > % [h(X)—h(X—e)—vci] = —cy,

which follows from the assumption that h(X) is a positive and
increasing convex function and the definition of operator T given
in (6). Therefore if we have f{X,M)eV, then TflX,M)eV, which
indicates that operator T' possesses properties P1-P7. That is, the
optimal control policy retains the same structural properties as
those under the expected total discounted cost criterion. [

Proof of Proposition 3

In order to prove Proposition 3, we verify that the
following Lemma 2 holds. To facilitate analysis, we define a
real-value function set ii on the state space ®. If a function
y(Y,M)etii, then y(Y,M) satisfies properties P1-P6.

Lemma 2. If y(Y,M)eii, then Ty(Y,M)e Y.

Proof. The proofs of properties P1-P3 are similar to those
in Benjaafar and El Hafsi (2006) and the proofs of properties

P4-P6 are similar to those of Proposition 1. We omit the proofs
from the paper for the sake of brevity. O

Then we have G(Y,M)e i and Proposition 3 is obtained directly
from Lemma 2. O
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Joint Control of Component Production and Inventory Allocation in an
Assemble-to-order System with Lost Sales
YANG Chao-Lin" SHEN Hou-Cai' GAO Chun-Yan'
Abstract This paper considers a joint control problem of combined component production and inventory allocation in an

assemble-to-order system which consists of two components and three demand classes with lost sales. Each demand class
arrives according to a Poisson process, and the production time of each component follows an exponential distribution.
By formulating the system as a Markov decision process under the expected total discounted cost criterion, we obtain the
optimality equation following the Lippman transformation, from which we derive the structural properties of the optimal
control policy. Specially, the optimal production policy for each component is shown to be a base stock policy with the
base-stock level non-decreasing in the inventory level of the other component, and the optimal inventory allocation for each
component is a state-dependent threshold policy, where the threshold point for the demand for one kind of components is
non-decreasing in the inventory level of the other component, while the threshold point for the demand for both components
is non-increasing in the inventory level of the other component. Finally, we give some numerical examples to show how
the optimal control policy changes with the system parameters, and we also provide some managerial insights.

Key words Assemble-to-order system, multi-class demand, Markov decision process, optimal control policy

FE = i B F A (1) 4R, e] LR AR 11 K
A5 A T3 H 25 22 AL T SR RRCA A 4 3 T (1)
MER 2 ) W 2E AR TSGR F ) 2 —. R
R, #%P3ERL (Assemble-to-order, ATO) X Fl
BRSSP, IF B 2 ik an 2 44 AR
T4k Flextronics 2 # M. KA ATO 88 )7
AN, 32 B8 A7 O A e QB i A2 =l FH 4L, ifg
PR AR B AT R DL S FREEAT AN AR (4%
AL R A S WK 1 FrR). ATO &8 7
{EAF AL BB 4 LR P A7 5 R 3 ik %2
FEAL IR 7= b 3 A2 2 AN PR AR 7 k. AR T B 4l A 1)

ks H 45 2010-04-01  skHIH I 2010-08-18

Manuscript received April 1, 2010; accepted August 18, 2010

E X B AR F2 54 (71071074, 70831002), YLHR4 H AR R34
(BK2008273) %)

Supported by National Natural Science Foundation of China
(71071074, 70831002) and Natural Science Foundation of
Jiangsu Province (BK2008273)

1. FRURY TR 4B MaX 210093

1. School of Management Science and Engineering, Nanjing
University, Nanjing 210093

PP RIE AL GE R AL, A A 23 T 1) e
Wt T SR A RO A ™ S A A A7 S T SR
ATLARE AR AT O da 78 77 AU Dusidt, JfF H5 2
SR I 5 D 722 R AR, A —A
3 K, BUAR by 88 D AR 1 e Pl Al i A8 T3
Pl skng kS 55 [ bR b 58 4.

H T 5 ARSI ATO 3278 Inl UAH OC (1) SCHR
RECAT LA A PIE: — R AN E ST I B0 T 17
4 e 26 AR S A B OCE R A AR SR AT
[ AR, Hal™ WF50 7 8077 i, 228555k, A
4h (Lost sales) [ZEA-4E (Make-to-stock, MTS)
ARG, R4 KT RK AR R B3k, 7 iohn T A ik
MARE AR T, AR T e 0 A 7 A i i A
PEAE SN o Joe DL PR A7 73 TG S 2 B30 1 5. Hal® i
FUT RT R BB fEsh R4 (Backorders), UFBH T
MR W S B PR SN | B DL AT T SRS 2
AT Z 8 % 2875 SR B BT B 1) 3 A g . 2000 4
Hal®) ¢ JFUREAY HE— 54 21077 5 o ik ) i A 3%
IRZE3 AT BTG OL, UE ] T S 02 7 SR A2 A T &



2 4] MRS 42 R IC AR 48 P AL 2R MEAT 23 BC 42 T SR F 5 235

S8 T A 7KV R0 AR =t R TR RS A SR T A
FEAT 43 TC T W A M T JR 48 2 A0 A7 AT R AR 7 313k
J5E A A S . 2009 4F Gayon 25100 7E Hal™l A7
(PISEA 25 R T SR ) A N R R — AN AN 2R
(P75 SRAG B B, IR T et A 7= SR e R A+
SBCFEIE . 2002 4 Vericourt 251 ¥ Halsl 4 5|
ZRT G, HAEW T e e 2 0 Hal®l 28481
(F)1E %, Benjaafar 251U W57 T 241 #7252
KK ATO RS, 764287 K DUH B A A
FEBIL . ALAF I T (] A A S Z o A fiose T, Al T
W T A B 0 AL = WS 2 B A JE AT SR . AR
AF IR0 3 C S I 1) 52 250 28 T (L SRS

Machine Demand

Inventory

K1 ATO R4
Fig.1 The structure of ATO system

BRI R i 2 RBE B MTS R4t
M ATO R, AW ARG S AR, BFEH
FE T il e SR A AN BB AL =3P AR I
ATO RZ. BRIz H /R BRI AEEEE . 2k
RS IE R G USRS I S5 PR R

1 RBEEST 55

ARICHFUXFE—F ATO R 48 WRRAL1E5 5 7E
P AR A 0 A AR 5 1 2 Y
Ak, P4 B = RANR B 1T 5 LA, 2099 FH X el 4
PR e =P b A AL IX =R T oK. 5 1 3R
PR AR T AN TR, 2 2 SR 1
AN 2 FIRR, 55 3 Rk ki 1 AR 1 A
AT 2 FIRR. BUE B2 F 3K DU T AL i ke 1
FERIE, SRR A, Ao, Ag, AL I TR 23
IIRAIIAE N 1/ 1, 1/ o BIEEEM. RIEE )
B R A A R AN AL (0 A7 50 RO RS
PP R SRS € 5 AR IN A2 77 L A7 BUA T A N2 PR
A7 BE R KA 52 P AL A P A7 AT = 887 i 7 K
FROMAC, BIRE AL A BNA R P dh ok, R
TR, o P AR LAY, =TSR A A
HIRAILN c1,co,c5. AR, BAVEGE ¢5 >

C1 Z Co.

BLa(t) = (z1(t), 2(t)) TR RAAEMZ) ¢ 1R
A, H o, (t) RoRWZI ¢ 5 o AT I AR KE
h(@(8)) = ha(1) + ho(2s) TR RGAENZ ¢ R
x(t) FREFFA AR, hi(x;) ZKRT x; B
M RR AL, EH TR ISR SR B (1IN R) [v) B A AT AL
P 7 I i ) 2 Ak A E o3 A, B LA ) AT DL A
— N RBER AL R

B AT AT NG, REEPTARRA N
(z1,22), Bl 21 (t) = 21, 22(t) = 2o, FEHMG 7 N, TR
HEATEIEN a™ (21, x0) = (ug, ug, vy, v, v3), IR
u; = 1, AHRGAETIRE (21, 20) B, FHEAE™
550 RAME, wp = 0 WAER IR v =1, BAH
ARG TR (z1, 22) W, WL BB ¢ TR,
v; = 0 MFEZZ TR, N7 () Fonfefshlsgms « 1,
[0, ] IS TR B B AE AL IR 58 @ RAR SR EL. RGN
SR TC BRI HUR AT LU Oy

B [ /O e oth(m())dt + i /O N e_"‘tcidN;T(t)]

(1)
b o RAPHIE T, ¢ = 2(0) KAMEPETK
P 3 (1) A R TG BT 1 b
7 RS, 54 0% 1 2 T RSB 1110 A4 4 4
A, EAIHS BRI NS« A7, Tl bR
SRR PN o, AT LT A S
N, A8 V(@) Sy BRI, s
AP MR A R R S )L B8 R 25 1 75 A R
Fe R, MR CHR [12], X R Gk A BRI
AR, By = ST N 2 s, T E LN
LR, A7 oy = 1, R (1) BEAT B Mk A T
T TR A B R B A R

V(@) =h(@)+ > mDiV()+ Y NT'V(x) (2)

Hr
T.V(z) = min{V(z +e),V(z)}
+ Ci}, ZT; ?é 0

min{V(z —e;), V()
e; =(1,0), eo =(0,1), e3 = (1,1)

wITTRE (2) Fas: DOAARIRSAE AT IR &
1 JC R AHT s meAs (55X i) 6T 40 i 21 2
TR R I Z B 1) B = A B R AR IR,
0 DU RS IR AR A0 4R R 1) 6 BR BH T 1 e A
IIAE. Bt SR w3 a2 B O T 2 (2), 1 B 2
A] DAZ i) g 00 SRS R

1) W V(z +e) - V(z) <0, BIE—41F5
AAACERE N 1 AN AL AT DL RS0 S/ i, )
NAZIERE T IR A P iz A A5 e A=,



236 H | 1k

F {1

374

2) MHIGL, WV (x z)+c; > V(z—e;), M
T PEAE AP 1A BT AT AT R e dme /) AR 3

TRy /TR 24 U B R AL 1) 8t o SR g
PR AR, N AL ISR, A, R
APE 1A 2 KD AN A AT R SN AN T
RN TR 5 = S bt 75 SR PITRE 7 2R PR 4B 28 Al
A, WU AL 12 SR TR IR 4.

2 BIIEHIRI R E SR
it e = eg, &AM

AjV(z)=V(z+e;)—V(z) (3)
AV(z)=V(z+e) - V(z) (4)
A Vi) =AV(z+e)—AV(z) (5)

PLY FosE AR AR 3R BB G, J
Hig LR 5V eV, WX i=1,2 HFWF

Al: ALV(z) >0 (6)
A2: ALV(z)<0 (7)
A3: A.LV(z)>0 (8)

BT A1 KW Vi(e) BAT N, TR A2 K
AV (x) /2 x; R s, TRt A3 R AV (z) 2
x; [PHGRREL.

51 1. MRV ey, WHTV €V, Hh
TV (x) = h(z)+ >0, TV (@) + 30 NV ().

MERR. HSCER (1] A4V e V A T,V (z) € V
UK T3V () € V. WP, RFIEY] TV (x)
V, REE TV () Wi 2t A1~ A3.

L _JV(x)+e, r=0
g V(x)_{min{V(m—el),V(m)—i-cl}, 21 £0
V(z)+ e+

0, Tr1 = 0
mln{—A1V(.'L' — 61) — (1, O}, T ?é 0

1) FHEW) TV G2 YR AL, BE A, TV ()
>0, =11, HICHR [7] FEe AL, T R
Ao, TV (z) > 0.
A272T1V(Z) = AQ@V(Z) +
0, xr, = 0
mln{—A1V($ —eq + 262) — (1, 0} —
2min{—A1V(m—el +62)—Cl, 0} +
mll’l{—A1V<$ — 61> — Cq, O},

i—/l I = 0 H:J‘, A272T1V($) =

I 7é 0
A272V(m) Z 0.

M A0 W, B A2 50

—A1V($ —eq + 262) — C > —A1V($ —e + 62) —

cp > —A1V(.'L‘ — 61) —C

Ny ﬁFf DL AT 73 -
a) B —AV(z —e) —e 2 0,
A2’2T1V(.’L') = AQ’QV(x) >0
b) %I —A1V($—el +82)—C1 > 0 > —A1V(x—
e) —c I,
A272T1V($) = A272V(m) — A1V(m — 61) — C1 =
AQ’eV(.’L' — 61) — A1V($ —e; + 62) —c > 0

C) %I —A1V($—61+262)—01 > 0 2 —A1V($—
(A} =+ 62) —C EH‘,
A272T1V(:I:) = A276V($ — 61) +
A1V($ — € +62) +c > 0

d) % 0 Z —A1V($ —eq + 262) —C Hﬂ‘,

Ao, TV () = AgoV(z) — AV (z —e; + 2e5) +
20\ V(z —e; +e) —AV(x—e) =
NpsV(z—e) >0

2) BLUEW] TV W25 A2, RIHIE Ay TV (x)
< 0.
ATV (2) = A,V () +
min{—A;V(x + e2) — ¢1,0} —
min{—A,V(z) — ¢, 0},
min{—A;V(x +e,—e;) —c;,0} —
min{—A,V(z) —¢;,0} —
min{—A,V(z —e;) —¢;,0} +
L min{—A,V(z +e3) — ¢1,0},

.%'1:0

.’171750

A2 1 A3 Kl —AV(z+e,—e) — ¢y
AV —e) —a > —AV(x+e) -
AV (z) — .

A R LA AT 53 B

a) M —AV(z)— ¢ >0,

- ALQV(x) é 0

ALY,

ALQTlV(x)

b) i —AV(z+e)—c; >0>-AV(z)—cy
i,
A1,2T1V($) = ALQV(.’B) + A1V($) +c =
AV(x+ey)+e <0



2 4] MRS 42 R IC AR 48 P AL 2R MEAT 23 BC 42 T SR F 5 237

¢ A -AV(E@—e)—ca>02>-AV(+
62) —C Dﬂ‘,
A1’2T1V($) =
AV (z)— AV(z +e) + A V(z) <0

d) e —AV(x+e,—e)—c; > 0> —-AV(z—
61) — C Hﬂ_,

ALQTlV(Z) = —A1V($ — 61) —c < 0
e) 0> A V(z+e—e)—c I,

ALQTIV(I:) = ALQV(.’E) —
A1V($ + 62) + A1V(m) — A1V(.’lt — 61) -
A1V($ — € +62) = ALQV(x — 61) <0
3) SHIEW] TV W2 A3, BNE A; TV ()
>0,i=1,2.
ATV (2) = ALV (z)+
(min{—A,V (x +e) — 1,0} —
mln{—A1V(:1: + 62) — Cq, 0} —
min{—A,V(z) — ¢;,0},
mln{—A1V(:1: + 6) — (1, O}—
m1n{—A1V($ + 62) — Cq, 0} -
min{—A,V(x) — ¢;,0} +
m1n{—A1V(m — 61) — Cq, 0}, T 7é 0
EE A2 %D A3 %D —A1V($ — 61) —c >
—A1V(.’L‘ +62) —c1 > —A1V(.’L') —c1 > —A1V(.'l: +
e) — C1.
N TS DU 23 S BEAT 3 B
a) ﬂ:il *A1V($ +6) — C Z 0 Hﬁ,

ALeTlV(.’L') = ALBV(III) > 0

x1:0

b) H -AV(z)—c>0>-AV(z+e) —c
I,

ATV () =AV(Z)—AV(r+e)—c =
A1V($) —C > 0

C) %{ *A1V($+32) —C Z 0 Z *A1V(m) —C1
i,

ALGTIV(:I:) = AMV(:I:) —A1V(.'L'+e) +A1V(.’E) =0

d) ;i,l —A1V(.’L‘ — 61) — C > 0 > —A1V(.’L‘ +
62) —C H‘J‘,

A1)8T1V($) = A1V($ +62) +c > 0

e) % 0 > —A1V($ — 61) —C1 Hﬂ‘,
A TV(E)=AV(z—€) >0
Az, =0 K x #0 ME#E A TV(z) >0.
Ao TV (z) = Ap oV (x) +
'min{—AlV(m -+ 262) — (1, 0} —
min{—A1V(m + 62) — (1, 0},
mln{—A1V(m -+ 262) — (1, 0} —
HliIl{-Al‘/(.T + 62) — (1, 0} —
mln{—A1V(m + e, — 61) — Cq, 0} +
L min{—A1V(m—el) —01,0}7

131#0

A2 FA3 51: —AV(z+e —e) —c >
A V(x—e)— ¢
—AV(x+ 2e3) — ¢

NS S FE A AT 4

a) B —A\V(r+e)—c >0,

Do TV (z) = Ay V() >0

b) ¥ A V(z—e)—c >

—AV(x+2e) —
—A\V(xz+ey) —c M,

A273T1V(.’E> = Agvev<$) + A1V<.’L' +62> +c > 0

c) B —-AV(ztes—e)—c >0>—-AV(z+
262) —C Hﬂ‘,

Ay TV (z) = AgV(z) >0
d) Y —-AV(z+es—e)—c; >0>—-AV(z—
e)) — ¢ I,
Ap TV (z) = AV (x) + Ac V(T —€1) >0
e) M —AV(r +e —e) —

—A1V(Z — 61) —C1
i,
—A1V(£I: + 262) —C

2 —A1V(.’L‘ + 62) — Cq,

> 0 >

A275T1V($) = A276V(.’L' — 61)—
A1V($+62 *61) —c1 >0

£) 50> -AV(z+e,—er) —c B,
Do TV (Z) = Ag V(T —€1) >0

Az, =0 K x #0 NEE ATV (x) > 0.
T T () WRHR Al~A3, P TV (z) €
V. [FIEAUE T2V (z) € V. T h(z) 2Ry
PR, B EARIE ALY AL~ A3, TR B Y %
LM HRAE M. LBk, JV eV, G TV
eV. O



238 H | 1k

F {1

374

7 U R AL
Si(r_) = min{z; > 0|A,V(z) > 0}
Rk((L'_k) = min{wk > 0|AkV( — ek) —Ck}
RE(z_;) = min{z), > 0|A.V(z —€) > —c3}

Hi, k=12, 2 =x; (K#J), TRAATIH2 K
M.

3| 2.

1) Sk(CC,k) S Sk(l‘,k -+ 1);Sk(x7k + ].)
Si(z—x) +1;

2) Rp(z—x) < Rp(z—p + 1), Rp(z_ + 1)
Ri(z—k) + 1;

3) Ri(v_ +1) < Ri(z_y).
iIEEH DLk =1 ﬁ@J *E%E A2 F1 Sy (xs) 1)
Sl(x2) E/JIEXiD Sl(.’EQ) S S (1’2 + 1)

A3 A, M AV (Si(xs) + 1,29 + 1)
A1V(S1(CC2),$2) Z 0 [H‘ T{:I‘ A1V(Sl(f£2) =+
ra 4 1) > 0. 1 8 (za) 58 X1 Sy + 1)
Sy(z_ 1) + 1, [FIBEATHE 2) Hevr.

HA3 I, 2 A, ( 3(22), 22+ 1) > A (R3(2),
.’1}‘2) —03 HT A ( ( 2),1L‘2+].) Z —C3. EE Ré(l‘g)
%T%Ii@ 1 %H%If_ﬂi 2, H R B par s

EIR 1. RGAAEM N G NS, MR T
W (w1, m2) I, 20 @ BRALOF R B A S 3 2
(VI RE A7 SR, RIAFAE L EAF AT S5 (), B HAL
;< Si(w_;) WFTEA A 0. AR T
SRS 2 B A BAH S, BUAAAE BIE KT R, (2-),
Mo, > Ry (o) WS (i = 1,2) KFK; 1748
(B 7K P (Ré (x2), R?, (1)), H oy > R;, (x2) H o
> R3 (xy) W, W25 3 SRFK, MRS, Hmifs
ol SR Mg I AT G i

1) Si (x_i) 7& x_; MARREREL, RIBEE 2_; (1
BOK, A 0 TR AT B AR B AR,
EASIN, JFH ooy BRI 1, 40 0 EEPEAF K
ERZHIN LA B S (2 4+1) < S (z—;) +1.

2) R; (z_;) & x_; MARRERREL, BIBERE 2_; 1
BOOK, BB 0 TSR 2 I BB A KA AR, {H
;F"%?)&/J\, %Eﬁ R; («T_i + 1) < R; (ZIJ_i) +1 (’l =
1,2); 1M Ry (w_;) & x_; WARMI R4, BIREHE 2_;
IR, 25 3 S8F KA 5 1970 BE B K 24 sk
INEEAAAR AR

B2 FEL 3 Jp ik T R GE R B A g A
JE A7 73 BE M (R 54, O ELAE I AR ] T 2% AN X K
EINAR =Y KAWL

IN

FrE
2y + 1),
0,

IN IV

(@=0.01, h=h=1,g=u=1,4=2=1,71=18 ¢,=250)

A

100
HAP= 0 1

120
100
80
60
=c,=150
20 ¢ =c \ HAEF=4 4 2
sl FMHAEF=ALPE 1 A2
20 40 60 80 100 120 140
xl
Bl 2 U S I S50
Fig.2 The structure of the optimal production policy

(@=001, A =h=1,p1=p,=1.5. 4 =4=1,
1,=18,¢,=c,= 100, c,=280)

50
45t

WL 2,
40 %E‘JI[J/

0 5

10 15 20 )26'5 30 35 40 45 50
1

K3 el Be sk
Fig.3 The structure of the optimal allocation policy

3 HWEKE

N T HE— 0 W % 2O AL 73 T SR 1 52
ATHAT T — ?ﬂﬁ’]éﬁﬁﬁ@“ HE a5 A
IR T 0 SRR R E AT (2) 13BN EAR A
PR SCAE HOR A 22 0] U, SR IR AR 25 1]
BIAE {0, nP>} x {0, nya}, Hh nPex, npax [
BE ALK, i3 Bf"fiﬁﬁﬁ)ﬂiuiﬁﬁﬁﬂﬁﬁﬁﬁﬁ%
BIOK P52 A2 AR 3% 282 B Ik A 45 R 1 R
ZERTRA 2 DY AL AN IR A 1. SRS R SR A5 1) B
YA e 8 (L0 V) 43 B s 0 A e A7 2 i sk, )
MARGMET RSz I, R Ve +e) — V(z) <0,
W NAZIT IR 2 P g gL A s e e A I Bt
B, R Vi(x) +c; > Vix—e;), WIS @ HT5K;
FEUEEEZGR

B4 FNELS 20 ie T Ay A X 0t 20 e ok
W RIS AIET 4 TR Y, HAb 2R AR, Ay B,
WES 1 &5 3R A 70 L BB, 55 2 2RF5 K70 i
BEDR R M4 1 SRR N T4 2 10
KA, IFH 1 BRI IE L A A R IRARHI S OL R,



2 4] MRS 42 R IC AR 48 P AL 2R MEAT 23 BC 42 T SR F 5 239

2w W] DUR ARG U 5 Smg. e 4 45 I At
RIS PRI, 1 Ay i/ T A I B 1 2K
K FL BB IR T 1, 2R 2 2875 K 1% 53 Bic (L
. S G 2 A KT T B AT I, 435
AR 2 RFEK. HEBA LG, REW LN 1, 3 KH
k. MBS afLUE A HARBSRAEAAR, Ay BOK,
MEE 1, 2 RFTFRE T ELBIE B S, 28 3 JEFR KI5
Bt B (B AT X2 R R 20 3 SRR SR I 2R Rk, A
MR ) TR AL 1R 2 BEAE R OR, AL ROk BIIA
[R5 3 R A oK.
(=001, h=h,=1,u4,=35 1,=3.51,=251=2,

¢, =200, ¢,= 200, c,= 400, 2, = 2 1 0.2)
80 . . : .

s0b| 1=02

601
501
= 40}
301
20F

0

B4 X R e oo e SO R 5
Fig.4 The optimal allocation policy vs. A\ with

c1+c <cs

(@=001,A=h=1,u=u=11=A=1,
¢,=c,=150,¢,=250,1,= 0.8 }1 1.8)
30 T — — T

3C

K5 g ox et o3 B SEms (K 5
Fig.5 The optimal allocation policy vs. Az with

c1+c2 >c3

B 6 ME 7 AR T M e+ <c3 I, ¢
A g XL BESKME R5200. E 6 ) U Y, 3L
A EANAL, ¢ BOR, WIZE 1, 2 SRR 73 Be B
HORAR, RN BRARER 1 S8 3K 20 e 1 {1 1K [ I i 2
BRARER 2 SR BC B2 0 TSR 1 A
2 MIEAFAR- 55 1, 2 2RI 7 KK BIA A — 2
M T ATEUE Y, AR SRAEAAE, s UK, WSS 1, 2
Ft RN P B (. # U, e + e

< cg B, BUEIRE LS H g R e, REHIT, 53
TR, RS, BS LRI AT
LE A .

(=001 h=h=1=u=1521=1,=11=18,
. 1.0‘01 c;lzso, €= 1|00 '7FFI 150?

45} :
40}
35}
30}
<25}
20}
15F
101 g
SHzes3t?
0

510 15 20 25 30 35 40 45 3

xl
6 c1+c2 <cs e XA TEC SIS K52

Fig.6 The optimal allocation policy vs. ¢1 with

c1+c <cs
(@=001,h=h=1p=p=1,1,=251=18,
¢,=c¢,= 100, ¢, = 250 il 300)

50 : —— . r .

45

40

35

30

25

20

10 15 20 25 30 35 40 45 30
X

1
B 7 c1+ca < ez I es XA BC SRS 150
Fig.7 The optimal allocation policy vs. ¢z with

c1+c2<cs

B 8 itit T 1 + co > c5 B, ¢ XL md
WS sE . A AR AR, o) O, WZE 1, 2 2K
SR BC BB, 26 3 KT R I/ FC BB 5. o5
AR 5 S SRR 0 T SRS P 5 J

4 INEERE

BN P FR AL = 2 T SR 2 ) 4 R
Mo AR GE, ASCHEIE T Hb i AL A7 1 ) 55 A7 03
Fic fr) . 32 ) /R BRI, 198 T st iy
P, 1330 T FefUas bl skng g vhm, ki T i
Tl SR A T AR SUIRAS I B A SR . & AL B
PR SR S Bl AR KL A7 s, I R A KR
AL A A 7KV (R A ook R K B DL 2 1 A B 3



240 H | k.

F {1

374

W 2 BN 2 1) B S . FRAT A FH BB R 0 0 A T %
N ZHON T A 73 B A& 1) 5ER, hy Ak ok S it 2
%

@=00LA=A=1,p=u=151=1=1,1=18

¢,= 150, ¢,=250, ¢, = 150 F1220)
30 : . . ; .

=150

C
25t — .

B

20f

=15

10r

K8 c1+4ca > cs B ey XRS5 BC 50 1) 52 0
Fig.8 The optimal allocation policy vs. ¢1 with

c1+c2 >c3

AR SCIBIE G AR A] LAAE 22 05 T HEATHE),
PR AL i — B A AT A L A WA A AR R
P (8 257 I 1) IR — JBERI 0 A1 . # R sR Bik i
FENE AR R SRS 00, PRSI — A i) 2 Bl 4l
REZNE %X%&ﬁ%m%a

References

1 Benjaafar S, Elhafsi M. Production and inventory control
of a single product assemble-to-order system with multi-
ple customer classes. Management Science, 2006, 52(12):
1896—1912

2 Lu Y D, Song J S, Zhao Y. No-holdback allocation rules
for continuous-time assemble-to-order systems. Operations
Research, 2010, 58(3): 691705

3 Song J S, Zhao Y. The value of component commonality in
a dynamic inventory system with lead times. Manufacturing
Service Operations Management, 2009, 11(3): 493—508

4 Deshpande V, Cohen M A, Donohue K. A threshold in-
ventory rationing policy for service-differentiated demand
classes. Management Science, 2003, 49(6): 683—703

5 Melchiors P, Dekker R, Kleijn M J. Inventory rationing in
an (s, @) inventory model with lost sales and two demand
classes. Journal of the Operational Research Society, 2000,
51(1): 111—122

6 Lou Shan-Zuo, Wu Yao-Hua, Lv Wen. Study on inven-
tory control under stochastic disruptions. Acta Automatica
Sinica, 2010, 36(7): 999—1006
(R, RAte, BC. BEPLHBTERS
%, 2010, 36(7): 999—1006)

7 Ha A Y. Inventory rationing in a make-to-stock production

system with several demand classes and lost sales. Manage-
ment Science, 1997, 43(8): 1093—1103

NIRRT, A Sk

8 Ha A Y. Stock rationing policy for a make-to-stock pro-
duction system with two priority classes and backordering.
Naval Research Logistics, 1997, 44(5): 457—472

9 Ha A'Y. Stock rationing in an M/Ek/1 make-to-stock queue.
Management Science, 2000, 46(1): 77—87

10 Gayon J P, Benjaafar S, Vericourt F' D. Using imperfect ad-
vance demand information in production-inventory systems
with multiple customer classes. Manufacturing and Service
Operations Management, 2009, 11(1): 128—143

11 Vericourt F D, Karaesmen F, Dallery Y. Optimal stock al-
location for a capacitated supply system. Management Sci-
ence, 2002, 48(11): 1486—1501

12 Lippman S A. Applying a new device in the optimization
of exponential queuing systems. Operations Research, 1975,
23(4): 687—710

13 Porteus E. Conditions for characterizing the structure of op-
timal strategies in infinite horizon dynamic programs. Jour-
nal of Optimization Theory and Applications, 1982, 36(3):
419—432

14 Puterman M L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York: John Wiley
and Sons, 1994

EFky S TN
FUE. RIS ) b i
L P, N A B
E-mail: yclnju@163.com
(YANG Chao-Lin  Master student
in the Department of Management Sci-
ence and Engineering, Nanjing Univer-
sity. His research interest covers man-
ufacturing system analysis, optimization and control, and
supply chain management.)

LR B A e -t
&R, A

by W= DTN I%” A B BUR.
T B SETT 7 3 5 AR g5 s o A B
Jﬁﬁgiﬁi%ﬁfﬂﬁ‘jﬁﬂt 5 RS 7 B '?M
. E-mail: hcshen@nju.edu.cn
(SHEN Hou-Cai
Department of Management Science

Professor in the

and Engineering, Nanjing University.
His research interest covers manufac-
turing and service operations management, customer choice
behavior study, and operational risk analysis and manage-
ment.)

EEM WU TR B B AT
FUA. T EWFFTTT ) b A7 A A B
HEBA B AT . ASCEAE 1
E-mail: gaochy_2007@126.com

(GAO Chun-Yan Ph.D. candidate

in the Department of Management Sci-

¢
‘ ‘ ence and Engineering, Nanjing Uni-
production-inventory management, and queueing system
analysis and optimization. Corresponding author of this

paper.)

versity. Her research interest covers



	Production planning and inventory allocation of a single-product ATO system with failure-prone machines.pdf
	Production planning and inventory allocation of a single-—product assemble-—to-order system with failure-—prone machines
	Introduction
	Model description
	Optimal control
	The expected total discounted cost criterion
	The average cost criterion
	System with backorders

	Heuristic policies
	Computational experiments
	Conclusions
	Acknowledgments
	Appendix
	Proof of Proposition 1
	Verification of property P4
	Verification of property P5
	Verification of property P6
	Proof of Proposition 2
	Proof of Proposition 3

	References


	EJOR Paper by Houcai.pdf
	Production planning and pricing policy in a make-to-stock system with uncertain demand subject to machine breakdowns
	Introduction
	The model
	Structure of the optimal policy
	Optimal control for the long-run discounted profit
	Optimal control for the long-run average profit

	Numerical analysis
	Conclusions
	Acknowledgements
	Proof of Lemma 1
	References


	The component procurement problem for the loss-averse manufacturer with spot purchase.pdf
	The component procurement problem for the loss-averse manufacturer with spot purchase
	Introduction
	Problem description and model formulation
	Optimal policy and analysis
	Effects of loss aversion
	Effects of increased demand risk
	Effects of increased price risk
	Two-wholesale-price contracts versus single-wholesale-price contracts

	Extension to general spot price distribution
	Conclusions
	Acknowledgements
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8

	References


	A Multi-Period Location Model with Transportation Economies-of-Scale and Perishable Inventory.pdf
	A multi-period location model with transportation economies-of-scale and perishable inventory
	Introduction
	Literature review
	Model formulation and the solution
	Cost components at facility level
	Cost components at retailer level

	Computational results
	Conclusions
	Acknowledgements
	References


	Optimal inventory and hedging decisions with CVaR consideration.pdf
	Optimal inventory and hedging decisions with CVaR consideration
	Introduction
	Literature review
	Model formulation
	The basic model

	Static inventory and hedging decisions with a put option
	Price of the put option
	Newsvendor's profit
	Optimal ordering decision with given strike quantity
	Optimal decision on the strike quantity and order quantity
	Value of the put option

	Numerical examples
	Conclusions
	Acknowledgments
	Downside risk measure: CVaR
	Proofs of the results

	References





